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Abstract— Presently determination approach of nonlinear system

is suggested. The studied nonlinear system can be described by a
linear element followed by a system nonlinearity. This type of non-
linear systems is called Wiener models. In the proposed study, a
spectral analysis is used to determine the parameters of the nonlinear
systems. The modelling and determination of system parameters is
based upon sample signals. Furthermore, the algorithm is easy to
implement. The nonlinear element is not necessary polynomial
function, but it is supposed to be continuous and smooth in a small
interval. In this work, a spectral method is developed allowing the
estimates of the complex frequency gain as well as the estimates of
nonlinear block parameters.

Keywords—Nonlinear systems, Fourier decomposition,
nonparametric system, nonlinear system identification, nonlinear
modelling.

I. INTRODUCTION

onlinear system modelling and identification has been
an active research area, especially over the last two
decade [1]-[5].

Grey box modelling is one of the most commonly used
technics in nonlinear systems parameters determination. The
nonlinear element may occurs in the input of system or in the
output [6]-[8]. As it can manifest in the input and output, e.g.
[5], [8]. Then, this leads to four popular models allowing to
modelling nonlinear systems.
Presently, a nonlinear approach is proposed based on the use
of spectral technic to determine the nonlinear systems
parameters. The considered nonlinear system in this work can
be described by Wiener model. This latter is one of most
popular models. It consists of linear element followed by
nonlinearity block (Fig. 1). This model is more difficult than
Hammerstein model (nonlinearity element followed by linear
dynamic element).
The usefulness of this nonlinear model has practically been
confirmed in various domains fields [9]-[12].
Roughly, these solutions can be classified into four categories.
The recursive method [18], the frequency solution [15]-[17],
the stochastic methods [19]-[20], and the blind-identification
methods [21]-[22].
Then, the estimation of Wiener models parameters is proposed
without any a priori structural knowledge of the nonlinearity.
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In this study, an approach is suggested using spectral and
Fourier series representation. Then, the
relationship between the spectral decomposition of the output
signal and input signal is exploited.
Moreover, because of the Fourier decomposition, the
amplitude and phase information of the unknown linear
element as well as the coefficient of the nonlinear block can be
easily extracted based on the system output measurements and
spectral representation of input and output signal.
The considered problem of parameters determination of
nonlinear system (Fig. 1) is addressed in the case where the
linear dynamic block is nonparametric. The present solution
can also be applied in the case where the linear element is
parametric.
On the other hand, the system nonlinearity f(.) (Fig. 1) can be

nonparametric. This latter is supposed to be memorless
continuous function. Then, it can be approximated by a
polynomial function. The polynomial degree n can vary from
one interval to another. To the author's knowledge, the
identification approach is performed using only one stage
unlike most of other methods [19].
The proposed parameters determination solution involves
periodic input signals. Then, in the steady state, the
undisturbed system output w(t) is also periodic signal of the
same period of u(t) (Fig. 1). Accordingly, the internal signal
w(t) is decomposable of Fourier series. The nonlinear system
parameters (i.e. the nonlinearity block parameters as well as
the linear subsystem parameters) can be determined using u(t)
and the system output.
The remaining parts of paper are organized as follows: the
identification problem is formulated in Section 2; the
identification method of linear and nonlinear elements is
presented in Section 3; some conclusions of these method
performances are presented in Section 4.

Fig. 1 Nonlinear system structured by Wiener model

II. PROBLEM STATEMENT

Nonlinear system described by Wiener models consist of
series connection of linear block )(sG and nonlinear static
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element f(.) (Fig. 1). In this work, we assume that, the
nonlinear block is continuous function and smooth. Then, this
statement means that, the nonlinear function f(.) can be
approximated within any interval by a polynomial function of
degree n, where n is any limited integer. Then, the system
nonlinearity f(.) is allowed to be noninvertible. Furthermore,
the linear dynamic element is not necessarily parametric.

One other hand, the considered nonlinear system in this
work (Fig. 1) can be analytically described by the following
equations:

( ) ( )* ( )v t g t u t (1a)
)(tg L -1 ))(( sG (1b)

 ( ) ( )w t f v t (1c)

)()()( ttwty  (1d)

where L-1 and * denote respectively Laplace transform-
inverse and the convolution operator. Note that, the signals

( )u t and ( )y t represent respectively the input and the output
system. The internal signals ( )v t , ( )t and, ( )w t are not
accessible to measurement. Finally, note that the signal ( )t
refers to the system noise. It is supposed to be a random
ergodic sequence of zero-mean and satisfying the stationarity
property.
Recall that, that the nonlinear element (.)f is continuous and
smooth. Then, it can be modelled by a polynomial function of
degree n. Let  0

T
na a   denotes the parameters

vector of the system nonlinearity (.)f . Then, one immediately
gets:

 0 1 0

1

( ) n T
n n

n

x
f x a a x a x a a X

x



 
 
      
 
 
 

 


(2a)

where the vector X is as follows:

1
TnX x x    (2b)

On the other hand, it is important to emphasize that, this

problem identification does not have a unique solution

(solution plurality). Indeed, if the couple  ( ), ( )G s f v is

solution of this problem, then any couple of the form

 ( ) / , ( )G s k f k v is also a model, for any 0k  . In this

respect, the question that arises is how to choose the factor k ?

This question will be dealt in the next section.

The aim of this study is to determine an accurate estimate of
the parameters vector  of the nonlinearity (.)f as well as
the complex frequency gain ( )G j for any frequency  (i.e.
the phase  ( ) arg ( ) ( )G j G j      and the modulus

gain ( )G j ). Roughly, to determine the parameters of linear
dynamic block, two statements can arise. Firstly, if the linear
element is parametric, then this latter has a limited number m
of unknown parameters, where m is the sum of the numbers of
the numerator and denominator parameters. The identification
of this latter consists thus to estimate the complex frequency
gain ( )G j for m frequencies  1, , m    , arbitrarily
chosen by the user. The objective in the second case (i.e. the
linear block is nonparametric) is to determine the complex
gain ( )G j for any frequency  . In this paper, the
considered linear element is nonparametric and can be of
unknown structure.

III. SYSTEM IDENTIFICATION SCHEME

In this section, a solution of system parameters
determination is proposed. In this method, the nonlinear
system described by (1a-d) is excited by a sine signal.
If the linear block is parametric of m unknown parameters, we
will need to estimate the complex frequency gain ( )lG j for
m frequencies  1, ,l m    (the frequencies are arbitrarily
chosen). In the other case, i.e. the linear element is
nonparametric, the aim is to estimate the complex gain ( )G j
for any frequency  or for a set of frequencies. Presently, the
linear element is nonparametric, we seek thus the estimation of

( )G j for a set of frequencies.
Presently, the determination of the nonlinear system
parameters, characterized by (1a-d), will be done using
spectral analysis method, which amounts to accurately
estimating the nonlinear element parameters as well as the
frequency complex gain ( )lG j for an arbitrarily set of
frequencies  1, , N  .

The suggested solution, allowing to estimate the nonlinear
system parameters, is based on input sine signals:

( ) sin( )lu t U t (3)

where  1, ,l N    . Using the fact that, the linear block

is stable, the output of this element is also sine signal (when it
is excited with a sine signal). Specifically, using (1a-b) and
(3), one immediately gets in the steady state the following
expression for the output signal of linear element ( )v t :

 ( ) ( ) sin ( )l l lv t U G j t     (4)

Accordingly, it readily follows from (2a-b) and (4) that, the
output signal of nonlinear element ( )w t can be written in the
following form:
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On the other hand, it turns out that equation (5) involves
( 3n  ) unknown quantities. Which are the parameters vector

 0
T

na a   of the nonlinear element and the linear

block parameters  ( ) , ( )l lG j   , i.e. respectively the

modulus gain and the phase.

It is interesting to recall that, the following results can be
obtained immediately using the power linearization formulas:

 

 

2 2
2

1
2

2
0

1sin ( )
2

2 ( 1) sin 2( ) ( )
2 2

l l
l l ll

l
l i l

i l ll
i

t C

C l i t

  

  






 

      
 


(6a)

 

  

2 1

1
2 1

2
0

sin ( )

1 ( 1) sin (2 1 2 ) ( )
2

l
l l

l
l i l

i l ll
i

t

C l i t

  

  




 



 

   
(6b)

Then, it is readily seen using (5) and (6a-b) that, the
undisturbed output signal ( )w t can be rewritten as follows:

    
0

( ) , ( ) sin ( )
n

k l l k l
k

w t S G j k t     


  (7)

where the amplitudes kS ( 1, ,k n  ) and the DC component

0S depend on the system nonlinearity parameters  0 , , na a

and the modulus gain ( )lG j ; as for the phase k
( 1, ,k n  ), it depends only on the linear element argument

( )l  .
This last result (equation (7)) implies that the inner signal

( )w t (not accessible to measurement) is equivalent to sum of n
sine signals and a DC component. Accordingly, it readily
follows by combining (1d) and (7) that, the output signal ( )y t
of nonlinear system described by (1a-d) can be expressed as:

    
0

( ) , ( ) sin ( ) ( )
n

k l l k l
k

y t S G j k t t      


   (8)

On the other hand, it is interesting to note that for any
frequency  1, ,l k N   , the undisturbed output signal

( )w t (not accessible to measurement) is periodic of the same
period 2 /l lT   of the input signal ( )u t . This result can be
easily checked using (7).

Likewise, the spectrum of the inner signal ( )w t is
characterized by n components of frequency lk
( 1, ,k n  ) and a DC component (see (7)).

If the undisturbed system output ( )w t is accessible to
measurement, an accurate estimate of the frequency
component amplitudes kS ( 0, ,k n  ) as well as of the
component phases (.)k can be obtained using the spectrum of
the signal ( )w t . In this respect, note that the unique accessible
signal to measurement is the system output signal ( )y t . This
latter is ( )w t mixed up to the noise signal ( )t . Obviously,
the problem that arises is how to measure the inner signal

( )w t ?
Fortunately, such an accurate estimation can be available
thanks to the ergodicity property of the noise signal ( )t and
the steady-state periodic nature of the inner signal ( )w t . The
ergodicity allows the substitution of arithmetic averages to
probabilistic means, making simpler forthcoming
developments. These remarks suggest that an accurate estimate
ˆ ( )w t of ( )w t can be obtained using the following periodical

averaging:

1

1ˆ ( ) ( )
M

l
k

w t y t kT
M 

  for [0 2 / )l lt T    (9a)

ˆ ˆ( ) ( )lw t kT w t  for 1, 2,k   (9b)

where M is any sufficiently large integer. It is readily shown
that, the suggested estimator (11a-b) is consistent, i.e. the inner
signal estimate ˆ ( )w t converges with probability 1 to the true
signal ( )w t . Indeed, one immediately gets using (1d) and (9a-
b) for any time t:

1 1

1 1ˆ ( ) ( ) ( )
M M

l l
k k

w t w t kT t kT
M M


 

     (10)

Then, for any time t, this latter becomes using the fact that
( )w t is periodic of the same period 2 /l lT   of the input

signal ( )u t :

1

1ˆ ( ) ( ) ( )
M

l
k

w t w t t kT
M




   (11)

Accordingly, the noise ( )t is presently supposed to be a
zero-mean ergodic stochastic process featuring the lT -periodic
stationarity (on the set of lT 's of interest). The periodic
stationarity of noise ( )t implies that, for any time t and any
integer k, one has:

 ( ) ( ( ))lE t kT E t   (12)

Finally, it immediately follows from (12) that the last term in
(11) boils down to zero (w.p.1). Then, it readily follows by
combining (11)-(12) for any time t:

ˆlim ( ) ( )
M
w t w t


 (13)
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This result means that, the inner signal ( )w t is equal to its lT -
periodic average versions obtained by (9a-b).

On the other hand, it is important to emphasize that, the
determination of spectrum of the inner signal ( )w t using (9a-
b) allows to estimate the DC component 0S , the frequency

harmonic amplitudes kS ( 1, ,k n  ), and the component
phases k ( 1, ,k n  ).
Furthermore, it follows from the estimate of the DC
component 0S and the harmonic amplitudes kS ( 1, ,k n  )
that, ( 1)n  equations are given which involve ( 2)n 
unknown parameters, i.e. the nonlinearity coefficients
 0 , , na a and the modulus gain ( )lG j (where

 1, ,l N    ).
We have thus obtained a system of equations with fewer
equations than unknown parameters.
At the same time, n equations are given using the component
phases k ( 1, ,k n  ) with only one involved unknown.
Specifically, the linear element argument ( )l  where

 1, ,l N    . Then, for any input sine signal (3) of

frequency  1, ,l N    , the phase of linear block ( )l 
can be easily determined using the phase estimate of any
chosen harmonic component k ( 1, ,k n  ).

Accordingly, the determination of the modulus gain ( )lG j
(for any  1, ,l N    ) and the nonlinearity parameters

 0 , , na a needs to generate more equations involving the

nonlinearity parameters  0 , , na a or/and the modulus gain

( )lG j of linear element. For convenience, to resolve this
identification problem the system is excited by the sine input
signal (3) with another frequency  1, ,p N    and

p l  .
Therefore, it follows using these two experiments and using
uniquely the DC component 0S and the harmonic amplitudes

kS ( 1, ,k n  ) that, 2( 1)n equations are generated
involving ( 3)n unknowns, i.e. the nonlinearity block
parameters  0 , , na a and the frequency modulus gains

 ( ) , ( )l pG j G j  , with    , 1, ,l p N  and l p .

Finally, knowing that 2( 1) ( 3)n n   for any integer 2n  ,
then an accurate estimate of nonlinear system parameters,
described by (1a-d), can be immediately determined using the
data acquisition collected from these two experiments. If
necessary excite the nonlinear system with the input signal (3)
for other frequencies.

IV. CONCLUSION

We have developed a new one-stage identification method
to deal with continuous-time Wiener systems involving
nonparametric system nonlinearity. The originality of the
present study lies in the fact that, the parameters determination
method is done is one simple stage using simple sine signal.

Furthermore, the linear subsystem is nonparametric and of
unknown structure. Accordingly, the linear subsystem is not
necessarily finite order and the nonlinear element can be
discontinuous noninvertible.
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